Electrification of flight Next stop: Your gliding club

Jens Trabolt Nov 2021

Contents of this talk

- Pros and cons of going electric?
- Future of electric gliding? Look at the automotive industry
- Recent progress in electric gliders

There will be a pop quiz in the end!

Why go electric?

Our Pawnee is doing a fine job.

There has always been fluctuations in Co2-levels

Yes but

Latest CO₂ reading August 28, 2018

415,72 ppm 12 nov 2021

Elevated Carbon levels? What could possibly cause this?

Why are we burning so much fuel? Global population explosion

No need to burn coal, gas or oil

The Sun: A giant hydrogen fusion reactor - 600 mill tons hydrogen/sec) 1 kW/M² delivered to Earth

1 hour of sunlight can power all energy demands on Earth for an entire year

Fuel for another 5 billion years ... (vs oil/coal that will run out eventually – 100-300 years)

Question: Will we have access to gasoline in 2035?

Solar powered (electric) drivetrains

Pro

- Quiet, vibration free, clean (no oil, smell or smoke),
- Highly energy-efficient motors (90% vs 15%),
- No direct carbon emission during use (with green electricity DK Wind/Solar share 50 % 2020)
- Low pilot workload, no crazy stuka-dives (turbo)
- Few mechanical parts, less maintenance
- Area of global massive investment
- Certification standards are improving

Solar powered (electric) drivetrains

Cons (all battery related!)

- Limited energy density (8,9 kwh FES vs 125 kWh in 13 liter petrol, but much higher motor efficiency helps to level the disadvantage).
- Somewhat longish charging times (turbo gliders irrelevant, but relevant for future e-towplanes).
- Costly (so far), heavy and delicate batteries.
- Ressource-demanding batteries

The high volume automotive industry is a driving force (also in electrifying gliding)

- -Better tech
- -Cheaper tech

Projected x 3 sales of BEV/PHEV cars since my last talk in 2018

Q: Who is buying electric cars now?

Q: Who is buying electric gliders now?

(A: It's no longer the professor-types (innovators), that will accept technical difficulties, but the next segment that expect real utility.

Strict EU emission legislation will boost electrification on a broad scale

CAFE (Corporate Average Fuel Emission)

EU-requirement 2021

 $95 g CO_2/km$

Real average fleet emission 2020 (DK)

 $125 g CO_2/km$

EU penalty 2021 = 95 euro per gram Co_2/km exceeded over requirement

(E.g. $125 \text{ g/CO}_2/\text{km} = 30 \text{ grams too much x } 95 \text{ euro x no of sold cars in Europe.}$

= 2-figure billion euro fines per automaker (VW, PSA etc.)

The requirement will tighten to 59 grams CO_2 /km by 2030.

Consequence

Legacy automakers will no longer produce fossil cars, even if consumers want them and dealers want to sell them.

Only option is mass introduction of PHEV and BEV cars.

Battery supply and demand in Europe in the 2020s

Battery demand scenarios*

Accelerated

— Enhanced 2030

— Current policy

*"Current policy" scenario is based on the current EU car and van CO2 targets; "Enhanced 2030" is the same as "Current policy" with an increased 2030 target; "Accelerated" scenario is based on T&E's recommended targets. Demand also covers other applications such as heavy duty vehicles, energy storage, maritime and industrial applications. Scope: EU+UK

Tesla Giga 1 Nevada – Worlds biggest battery factory

Companies that announced Li-ion battery production lines in Europe and planned capacities. Used with permission of Roland Zenn.

<u>Tesla</u> 100 GWh demand 2022 3000 GWh (3 TWh) demand 2030 (est)

Will electric powertrains follow the standard routine?

Consumer tech always goes "Cheaper, better, faster" with each design iteration

- Production volume/efficiency increase
- Cost decrease
- Performance increase

4.000 USD in 1984 (almost 10.000 in current prices)

Basic phone, 15 USD 2020

Batteries are the main area of improvement – costs are going down

2018 = 180 \$/kwh at pack level for Tesla Model 3

2021 = 130 \$ (est.)

2023 (est.) 100 \$/kwh
Price parity threshold with the cost
of a fossil powertrain (engine, fuel
tank,cooling, exhaust, gearbox et)

Battery cost is expected to fall further with expansion of global production capacity

Batteries

Tesla/Panasonic "tabless" prototype 4680 Est. 2022

Cobalt-free
Lower cost (56 %!)
Higher energy density
Lower resistance
Better fit in battery-packs

Batteries
More power in less space
Example FES Kokam batteries:
2011 30 kg = 4,2 kWh
2022 40 kg = 8,9 kWh

The electric glider market is booming

Lange Antares 20/21/23E (2003)

First real CS22 EASA-certified electric SLG

20/21/23M flapped open class SLG

Aprx 60 produced (including petrol turbo)

42 kW motor (Battery pack 15 kWh/80 kg) from 2022 (new 21700 Tesla-batteries)

Climb performance 4,0 m/s / + 4200 meters alt.gain / + 5600 m in Long Range-

version

Lange-powertrain also used in Arcus Electro prototypes

Schleicher ASG 32 EL, first flight 2016

Developed in joint venture between AS and technical universities in Hessen.

20 m 2 seater

Electric turbo, 25 kW Emrax motor, 7 kWh battery

Total weight of turbo system: 89 kgs

Climb performance 1,3 m/s (NG test) 100 km range

Status: In production and certified

FES-drivetrain 2009 -HPH Shark Ventus 2/3 / LS 8 e neo Discus Alisport Silent LAK 17 /MiniLAK

DG 1001 neo (2020) Duo Discus (2021)

4,2 kWh (2022: 8,9 kWh!) batteries (2 x 15 kg), 22 kW air cooled motor.

Horizontal flight with 5 kW, 100 km/h / aprx 80-100 km range Easy drivetrain management: The ultimate non-stress-turbo

Makes cross-country flights easy, also for inexperienced pilots

FES System
About 250 gliders flying

Battery Power increase: From 15 (initial type) to 22 kW (present) **Increased fire and mechanical shock protection** since 2 fire incidents in 2017

Pro No pylon drag if engine fails, no complex pylon mechanism **Cons** A small, but measurable extra drag from the propeller blades (1-2 L/D)

Fun fact:

The AS 34 ME scored almost 10 dB(A) lower in noise certification tests than the relatively quiet ASH 31 Mi. That is subjectively half the volume!

AS 34 Me - 2020

15/18 M standard class SLG (based on ASW 28)

35 kW 228-Emrax-motor (from ASG 32 EL)

8,6 kWh battery in wings (improves cockpit load capacity, but 100 kg wings) Climb speed 3,7 m/s / 2,5 m/s cont.

Total climb 2200 meters or 1 start to 600 m plus 125 km motor flight Status: In production and CS 22 EASA-certified

AS 34 Me https://youtu.be/Kq-ecNd_548

AS 34 Me https://youtu.be/ji0afTgzGPU

Jonker JS3 RES - 2021

15/18 M flapped SLG (up to 575 kg)

9,2 kWh batteries (developed by Emetric (SOLO) 40 kW Emrax 208-motor.

2 x 25 kg battery weight. Fuselage mounted.

Can be flown with single (75 km sustainer) or double batteries.

Approx. 2000 meter climb / 3,5 m/s

In development – small powertrain delays due to global electronic component shortage – Certification probably completed Q1 2022

Jonker JS3 RES https://youtu.be/gMmu98hiLko

Jonker JS3 RES system operation https://youtu.be/vuS_nC3cE7o

Onix, first flight November 5th 2018

17 m flapped TMG (e-LSA)

Prototype based on the Rotax-powered Czech TMG "Phoenix".

60 kW MGM-Compro motor (Battery pack 34 kWh in fuselage), 10-20 kW fast charger

Endurance 150 mins / + 300 km (real life)

Tow hook fitted, tow trials spring 2020

Status: Can be ordered, CZ E-ELA

Global transport electrification will push gliding Gliding is not an island. Electrification in aviation will develop rapidly as a function of global transport electrification

A good place to experiment

Gliders can fly on very little power – if we want to power a B737, it's a good beginning to start with a Discus. Gliding is engineering culture. We invented lots of good tech in the past!

They are already here

Most glider manufacturers has some kind of electric gliders now— unthinkable 20 years ago. How will it be in 15 years from now?

What can we do as gliding community?

- Vote with your wallet: Buy electric gliders
- Interact with manufacturers
- Lobby for development of electric towplanes
- Form work groups

If we succeed, we will hopefully experience:

- Less noise complaints from neighbors
- More fun in flying
- Increased safety (end of the usual turbo accidents?)
- Less social and political pressure (maybe even elevation to role models and rewards!)
- New member-attraction?

We as a sport will emerge strengthened from this. But only if we adress these issues now. Thank you